Tsc1 is a Critical Regulator of Macrophage Survival and Function.
نویسندگان
چکیده
BACKGROUND/AIMS Tuberous sclerosis complex 1 (Tsc1) has been shown to regulate M1/M2 polarization of macrophages, but the precise roles of Tsc1 in the function and stability of macrophages are not fully understood. Here we show that Tsc1 is required for regulating the survival, migration and phagocytosis of macrophages. METHODS Mice with Tsc1 homozygous deletion in myeloid cells (LysMCreTsc1(flox/flox); Tsc1 KO) were obtained by crossing Tsc1(flox/flox) mice with mice expressing Cre recombinase under the control of Lysozyme promoter (LysMCre). The apoptosis and growth of macrophages were determined by flow cytometry and Real-time PCR (RT-PCR). The phagocytosis was determined using a Vybrant™ phagocytosis assay kit. The migration of macrophages was determined using transwell migration assay. RESULTS Peritoneal macrophages of Tsc1 KO mice exhibited increased apoptosis and enlarged cell size. Both M1 and M2 phenotypes in Tsc1-deficient macrophages were elevated in steady-state as well as in inflammatory conditions. Tsc1-deficient macrophages demonstrated impaired migration and reduced expression of chemokine receptors including CCR2 and CCR5. Phagocytosis activity and ROS production were enhanced in Tsc1-deficient macrophages. Furthermore, pharmacological inhibition of the mammalian target of rapamycin complex 1 (mTORC1) partially reversed the aberrance of Tsc1-deficient macrophages. CONCLUSION Tsc1 plays a critical role in regulating macrophage survival, function and polarization via inhibition of mTORC1 activity.
منابع مشابه
Hepcidin Induces M1 Macrophage Polarization in Monocytes or THP-1 Derived Macrophages
Background: Macrophage polarization plays a critical role in determining the inflammatory states. Hepcidin is a key negative regulator of iron homeostasis and functions. Although hepcidin has been shown to affect ferroportin expression in macrophages, whether it affects macrophage polarization is still largely unknown. Objective: To address whether hepcidin ind...
متن کاملTsc1 expression by dendritic cells is required to preserve T-cell homeostasis and response
Dendritic cells (DCs) are pivotal to the induction of adaptive T-cell immune responses. Recent evidence highlights a critical role of tuberous sclerosis complex 1 (Tsc1), a primarily upstream negative regulator of mammalian target of rapamycin (mTOR), in DC development, but whether and how Tsc1 directly regulate mature DC function in vivo remains elusive. Here we show that selective disruption ...
متن کاملTSC1/2 Signaling Complex Is Essential for Peripheral Naïve CD8+ T Cell Survival and Homeostasis in Mice
The PI3K-Akt-mTOR pathway plays crucial roles in regulating both innate and adaptive immunity. However, the role of TSC1, a critical negative regulator of mTOR, in peripheral T cell homeostasis remains elusive. With T cell-specific Tsc1 conditional knockout (Tsc1 KO) mice, we found that peripheral naïve CD8(+) T cells but not CD4(+) T cells were severely reduced. Tsc1 KO naïve CD8(+) T cells sh...
متن کاملThe tuberous sclerosis complex: balancing proliferation and survival.
Mutations in genes encoding either hamartin [TSC1 (tuberous sclerosis complex 1)] or tuberin (TSC2) result in a multisystem disorder characterized by the development of benign tumours and hamartomas in several organs. The TSC1 and TSC2 proteins form a complex that lies at the crossroad of many signalling pathways integrating the energy status of the cell with signals induced by nutrients and gr...
متن کاملIdentification of Regions Critical for the Integrity of the TSC1-TSC2-TBC1D7 Complex
The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidney...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2015